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FOREWORD

The theoretlical background for the study of hydro-
elastic problemg, recently Introduced to the deglgners of
naval craft, has been taken mostly from the analogous fleld
of aeroelastlcity. Two problems In hydrofoll design that
have recelved some attention are (lutter (oscillatory diverg-
ent motion) and dlverpence (exponentially divergent motion).
The boundary between stable and unstable motlon 1n each case
1s the critlcal rlutter-gspeed or cerltical divergence-speed.

This volume discusses only crlitical flutter-speed.

This rescarch was carried oubl under the Bureau of
Ships IFundamental lydromechanics Rescarch Program, S-R009-01-01,
administered by the Davlid Tavlor Model Basin, Offlce of Naval
Research Contract Nonr 203(39).

The autlhor wishes Lo express hls grabitude to Pro-
fessor Holt Ashley of the Department of Aeronautlcs and Astro-
nautlcs of the Massachusctts Instilftute of Technology for hils
helpf'ul comments, Frofiessor Paul Ritiser of the Department of
Mathematics of' Stevens Instltute of Technology for hils contri-
bution to thls report, and Mr. Ralhan All, Research Engineer
at Davldson Laboratory, f(or the reductlon of data used in

thls analysic.
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NOMENCLATURE

Definition

dimensionless distance 1n half-chord lengths
from midchord to rotational axls, positive
1f the rotational axis 1s aft

half-choed length

chord length, ¢ = 2b
Theodorsen {unction
quantitics delined in Eq. 26

translation dicplacement of model [rom
equillbrium

initial amplitude of simple harmonic
translatory motilon

quantltics derined In Isg. 32
dimensionless downwash velocity at 3/M chord
inteprral Index, L = 1, 2, 3...

mass polar moment of incrtia of rotating
parts about its center of pravity, per
unit span

mass polar moment of inertia of rotating
parts about the rotational axis, per unit
spar

value ol 1“ i'or Lhie nth mass condition

the ith change in I, AL = I - I
“ “q %41 ai

imasinary unit, j = V- 1

reduced f'requency, k- mb/U

support stittness in translatlion per unit
span




Symbol Definition

support stiffness in rotation per unit span

length of ith cylindrlical welght 1n second
group

the Lagranglan
inverse Laplace transformation operator

unsteady hydrodynamic 1ift and moment, per
unlt span

L, La’Mh’Ma dimenslonless unsteady hydrodynamic coef-
flclents, complex functlons of k, tabulated
in references 9 and 10

hrt’Lhi"Lar' dimensionless unsteady hydrodynamic
oMM coelficlents, real functions of k and a,
ail’ "hr’"hi defined in Eq. 26
Ml Ml
ar’ ol
total oscillating mass per unit span,
m=m_ + m,
a
mass required in welght group 1 to attain
desired mass
mass of translating parts per unlt span
total mass of nth mass condition
mass of rotating and translatlng parts,
per unlt span
m, value of m for apparatus wlth no welghts
added
Ami the 1th change in m Ami =My - My
n index glving mass condition, numbered
successively starting with the lowest value,
n=1, 2, 3...
P complex Laplace transform varilable
P(p) fifth order complex polynomial in p
Qh generallzed lorce

-—'-n;'t




Definltion

generalized moment
sixth order complex polynomial 1In p

dimensionless radius of gyratlon about
rotational axis, ré =1 mb?

radius of cylindrical weilghts in group 2
firth order complex polynomial in p
dimensionless “ime variable, s = Ut/b
first moment of mass of rotating parts 1n
the nth mass condltlion, about the rota-
tional axis, per unit span

time

real and imaginary parts of the Laplace
transform varlable, p =u + j v

real roots of Eq. 46 given 1n Table III
'ree stream veloclty

dimensionless cilrculatory response function
giving uncteady 110t and moment [or an

arbitrary motion, defined in Eq. 36

distance from desired center of gravity
locatlion to Lhe center of gravity of m,

distance from desired center of pgravity
location to the center of pgravity of my,

dimensionless distance in half-chords f{rom
the rotational axis to the center of pravity
of m. posttive 1 the c.p. 15 aflt

rotation displaccment of model [rom equili-
brium position, positive for leadliny edge up

Initial amplitude of simple harmonic
rotary motlon

coupling mass coefficlent, p = m“/m

il




Definition

Indicates virtual displacement

complex elgenvalue of equatlons of motion,
A= -04 Jo

denslty ratlo, p = m/(mpb3)
value ol ;o for the nth mass comblnatlon

the 1th change 1n Moo Aﬂi Ty oL T My

critical denslty ratilo
mass density of water
mass density ol welghts 1n second group

real part ol -i, determines decay rate of
osclllatory motlon

phase angle between h and @, posltive when
h 1s leadlng

Wapner unction

4 dimensionless X, %= Ab/U

w Imaglinary part of A, circular frequency of
osclllatory motion

it uncoupled natural frequency 1in translation,
wh = Kh/m

W, uncoupled natural [requency in rotation,

2 _

©a = ha,/Ioc

Qh dlmenslonless natural frequency in trans-
lation, QF = whb/U

Qa dlmensionless natural frequency 1n rotation,
, = wab/U

Indicates dilferentlation with respect to t
! Indlcates differentiation with respect to s

- Indlcates Laplace transiformation

X1}
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ABSTRACT

The theoretlcal procedures ccmmonly used by aero-
elasticlans were applied to predict the flutter speed of a
rigid hydrofoll that had two degrees of freedom. The results,
compared with corresponding experimental measurements, indl-
cated a dlscrepancy between theoretical and experimental
flutter speeds at low density ratlos; the predicted asymptotlc
behavior of flutter speeds occurred, but at a lower density-
ratlo. In addltion, the accuracy of the clrculatlion terms is
more doubtful than that of the added mass and linear terms in

the theory.
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I. INTRODUCTION

Destructively large stresses or undesirable levels
of vibration have been induced in alrfolls operating near the
critical flutter-speed. Theoretical and experimental investi-
gatlons have shown that for certaln elementary elastic con-
figurations, flutter of folls 1n wafter 1s unlilkely (references
1, 2, 3, and 4). Figure 1 shows the range of density ratios
applicable to these simple hydrofoll-configurations. The
magnitude of the dynamic pressure encountered by submerged
control surfaces--rudders, stabilizing-fins, hydrofolls, bow
planes, etc.--1s greater than that encountered by alrfolls,
except for those used on recent, high-speed alrcraft. There-
fore, one 1s led to the following question: why have hydro-

dynamic control surfaces not experienced flutter?

In particular, bending-torsion fluttef ol canti-
lever-gupported hydrofolils has been investigated (reference 3).
In thié Investlgatlon, a critical density-ratio was predicted
below which flutter was not possible. isolated experiments
using simple supports, confirmed these results. In these
experiments, no flutter was obtalned and none predicted.
However, the low, overall damping assoclated with the
unsteady hydrodynamic forces on the rudders of a destroyer,
which recently experienced severe and sustalned hull vibrations,
has provided the lmpetus for further investigations of hydro-
dynamic flutter (reference 5). Cursory investigatlons of this
vibration 1ndlcate that more realistic support conditions, and
other condltions, may reduce the lowest value of density ratio
at which hydrofolls will flutter. Therefore, the reliability
of theoretlcal predlctions of flutter speed at low values of
denslty ratio must be determilned.




In previous hydroelastic work, 1t was assumed that
aerodynamic theorles would apply directly to the hydrodynamlc
problem. Assuming thls to be true, these theorles should cor-
rectly predict the flutter speed of a hydrofoll. Thls investi-
gation was conducted to experimentally verify the accuracy of
aeronautical theories when used to predlct flutter speed
( throughout the range of parametric values of interest in
hydrofoll design) .

Some previous work along these lines has been per-
formed. The NACA 1nvestlgated [lutter of light,cantllever-
supported wings in an alrstream made heavy by the use of Freon
and alr mixtures (reference ). The experimental points in -
Flgure 1 are representative of the results obtained by NACA.
The range of denslty ratlo in thils lnvestigation did not ex-
tend into that f(or a cantllever-supported hydrofoll. However,
the range of denslty ratlo in whlch {lutter was obtalned ex-
perimentally extends, by a small amount below the critical
density-ratlio, into the range in whilch flutter 1ls theoretlcal-
ly impossible. It is thils discrepancy which was 1lnvestigated.

In view of. the inconcluslveness of previous experi-
mental and theoretical results, a slngle set of experiments
was conducted over a range of denslty ratio extending from
reglon 1 through regions 2 and 3 and well into region U
(Figure 1) .

In these experiments, speed and density ratio were
varled; all other parameters were constant. Another séries
of experiments 1is beins; conducted at several addltional
values of center-of-gravity locatlon and radius of gyration
to investigate further the discrepancy between theory and

experiment.
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II. TEST SETUP

A.  MODEL AND SUPPORTS

The experimental setup was designed so that flutter
would be obtalned under controlled conditions that closely
duplicated the theoretical assumptlons; the setup did not typl-
f'y any hydrofoll application (Figures 2 through 6). The ex-
periments were performed in the Hlgh-Speed Faclllty.

The model had a chord length (c) of 6 inches and a
span of 12 inches. The profile was a thin symmetrical shape,
(NACA 0012). The offsets for the model were obtained from
reference 6. The material used for the model was a plastic

whose properties are summarized 1n Table I.
1. End Plates

End plates were used to provide two-dimensional flow
and were attached to the carrliage by struts and aluminum box-
beams. The chord plane of the model was arranged vertically
and the end plates were above and below the model, each with a
maximum clearance of 0.006c. The end plates were 11.290 Iong
by 6.71c wide. The rotational axis of the model was located
in the middle and 4.31c aft of the leading edge of the end
plates. The end plates were made of 1/8-inch aluminum plates
gtiffened in both the transverse and longitudinal'direction.
The transvesrse stiffenlng members were covered with aluminum

sheets, which provided falring to reduce drag.

2. Sting Support

-

The model was supported by a vertical sting that
passed through the upper end-plate and the water surface to a
flexure balance that was entlrely above water. The sting was
a stainless-steel tube (1l-inch 0D, 0.87-inch ID, BWG No. 16)




protected from the stream veloclty in the reglon between the
upper end-plate and the water surface by a falred shleld.

To reduce the effect of the hole in the upper end-
plate, a small, circular plate made of l/l6—1nch gtalnless
steel was attached to the lower end of the sting. The radius
of this auxillary end-plate overlapped the hole in the upper
end-plate when the sting was displaced to elther side. The
auxlliary end—plate_was below the main end-plate and had a

maximum clearance of 0.006c.

30 Balance

The sting was attached to the flxed support through
a flexure balance (Figures 5, 6, and 7). Two modes of motion
for the model in the horlzontal plane were permitted by this
balance; rotation about a vertical,spanwlse axls and horlzontal
translation normal to the direction of motion. Mechanical
stops limited these motions to *3/l-inch of translation and
2 degrees of rotation. The axls of the sting was in line
wlth the quarter-chord axls of the model and was located at
the apex of a palr of V-frames (Figure 7). These frames,
located 1in parallel horizontal planes one above the other,
provided a linear elastic restoring moment in the desired
rotational degree of freedom and were effectively rigld in all
other degrees of freedom. These frames were I-beams wlth
lightening holes in the webs and were necked down at both ends
as shown in Figure 7. Most of the flexibility of these beams
was concentrated in the necked-down sections (flexures); the
dimensions of the [lexures were chosen to give the desired
rotational stiffness. The base of the V-lrames was connected
to the fixed support through four parallel bars, which allowed
the whole unit to translate in the desired direction. 1In a
manner simllar to the members ol the V-[rames, the ends of the
parallel bars were necked down to provide the desired trans-
lation flexibllity (Figure 7). The translation bars were

alumlnum channels and the rotation beams were machined aluml-

num stock.

[




A spring-loaded, lockling mechanlsm was installed
that held the model in the desired initlal position until 1t
was released by a solenold controlled by a swltch at the

operators station.

The {lexure balance was anchored to the carrlage by
a supporting structure. To provide greater rigldlity against
rotation of the apparatus in the vertical transverse plane,
an outrlgger was attached to an auxillary wheel that ran
along the slde of the tank.

The apparatus _satisfied all requirements for the
support of the model. The rotatlon spring stiffness came wlth-
in 8% of the desired value and the translation spring stiffness
came within 3%. These errors arose mainly [rom the estimate
of the effect of '1llets at both ends of the llexures. A flex-
ure length equal to the actual flexure length, including both
flllets, minus one [1llet radlus, gave values f[or predlcted
stiffnesses within 2% of the measured values. The rigidity of
suppoir't agalnst undesired motlions was found to be well wlthiln
reasonable limits. The (requency of vertical franslatory
oscillations of the model 1n air was found to be three times
greater than the highest [requency encountered during the
tests 1n water. All other observed {requencles of extraneous

motlons were [1lve or more times the hlghest test frequency.

B. INSTRUMENTATION

The motions of the model were measured by recording
the unbalance of straln-gage bridges. Straln gages were mount-
ed on the llexure balance and the signal outputs from the
straln-gage brldges were recorded. To measure the speed of
the apparatus, an electronlc counter was used to determine the
time requlred for the apparatus to pass between two locations
a known dlstance apart. In addlitlon, a tachometer generator,
attached to the carriage, was actlvatcd by a wheel running on
the carrlage rall to measure the instantaneous speed of the

\_n




apparatus. The average speeds obtalned by these two methods
were in agreement and no appreclable speed f(luctuations dur-

ing the runs were observed.

In general, sllde rule éccuracy_was malintained
throughout the experimental analysis. Scatter 1n the data
is a result of actual extraneous effects in the experiments
and 1s not caused by 1lnaccuracies in the instrumentation.

The parametric values obtained in the experiments
are shown in Table II. In view of the large amount of weight
added externally and rigidly to the foll, the results of the
experiments described here should not be viewed as represen-
tative of any hydrofoll application. In practlce, density
ratios greater than 1.0 are seldom encountered, 1f ever.

The experimental flutter speeds and frequencles are
given in Table II and the results are plotted in Figures 10
‘through 24. The correspondlng theoretical results are pre-

gsented along with these results.

C.  WEIGHTS

Two sets of welghts were connected rigidly to the
sting to obtain the selected center-of-gravity (c.g.) loca-
tion (xab), radius-of-gyration (rab), uncoupled natural fre-
quency ratio (wh/ba), and to vary the density ratio(;ﬂl)while
maintaining all other parameters as constants (Table II).

The uncoupled natural frequency in each mode of

vibration can be deflned as [ollows:

o =K /m and o =K /I (1)
where Kh = support stiffness in translation per unlt span
Ka = gsupport stiffness 1n rotation per unit span
m = total oscillating mass per unlt span
Ia = mass polar moment of inertla of rotating parts

about the rotational axis, per unit span.
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The dimensionless radius of gyration can hbe deflned
as follows:
2 2
re = Ia/hb (2)

where b 18 the half-chord length of the model. When equa-
tions 1 and 2 are combined, the uncoupled natural frequency

ratio 1is
2 _ 2
(0, /0,)% = (K /K ) (r D) (3)
Thus, the stiffness ratio (Kh/Ka) 1s determined by the values
of wh/ba, r,, and b.

Let the subscript b denote the characterlstics of
the apparatus without welghts and the subscript a denote the
characteristics of the apparatus with the flrst set of welghts.
Let the subscript n =0, 1, 2, ... denote the deslred values
of the properties numbered successlvely, starting wilth the
smallest mass conditlon. Therefore, the necessary additional

mass (ma) can be determined as follows:

= = = 2 =
m,=m, - m = pmpeb m, (L)
where By = density ratio of 1initlal mass-condition = mo/npbz
p = mass density of water.

To find the required location of the c.g. of ma,the moment
of mass about the selected c.g. location 1is set equal to zero
as follows:

X m + X m =0 (5)
where x 1s the distance from the selected c.g. location to

the c.g. of the mass indlcated.

Equations 4 and 5 were used to determine the amount
of mass necessary to obtaln the initlal mass-condltion and
the locatlion of the c.g. of thls mass. The dlstribution of
m_ was selected to provide the requlred mass polar moment of
Inertia (Iaol Therefore, two welphts, each with mass ma/2,
were symmetrlcally placed on elther slde of the c.g. location
()_ca)° The dlstance between the masses was adjusted until




I“o =(rhp)2mo. (6)

In thils manner, the desired values of Xy Tpo wh/ma,
in addition to the initlal value of density ratio (po), were
obtalned. The second set of welghts were designed to provide
the selected values of Hp while malntalning a, xa, L. and
wh/ma constant.

The position of the rotational axis (ab) and the
stiffness ratio (Kh/Ka) were flxed; these properties remalned
unchanged throughout the experiments. Tnhe desired X, was
obtained with the [1rst set of welghts. To keep the c.g.
location constant, the c.g. of the second set of welghts was
put at the selected c.g. locatlon and thus did not change
X, Equation 3 shows that uﬁ/hh,Will remaln constant as m
Increases when r., 1s constant. Therefore, the ratilo Ia/h

was kept constant as the welghts were added.

At each mass condition (n), the moment of inertia
(Ian) and the mass (mn) may be divided into the sum of the
respective values for the lowest mass condition plus the
increment due to each weight added (1 =1, 2, ..., n - 1).

4

n 0]

n
I, =1+ ), AI
% 131 “1

n=1 2... (7)

n
m_ =m_+ z: Am
n 0 i 1

By substituting these quantitles into the definltlion of the

radlus of gyration, equation 2 ylelds

n

n
I+ 2, oI, ={(rb)2lm_ + ) am], (8)
%o 1=l %4 ¢ ° 4z H

and subtracting equation 6 from equation 8 leaves
) (c0)7 3
>, AL = (r p)? Am, , (9)
i=1 @5 @ i=1 1
which must hold for all n. Thercfore, |
AIai = (r,b)? Am, . (10)




A cylindrical shape was chosen for the welghts with

radius Ri and length Li and with axls at the deslred c.g.

location. The mass polar moment of lnertia of the 1th weight
per unlt span about the rotational axls 1s glven by
Am1
AT = —§—R“ + Am

ai 1. 1

Equation 11 comblned with equation 10 shows that:

(xab)a. (11)

R, = b L2(r2 - x2) 12, (12)

1
But the right-hand side 18 independent of 1. Therefore, the
subscrlpt may be dropped from R. The length of the 1th weight
1s governed by the required change in mass, as follows.

Am
2 (13)
7rp2R2

L=

where P 1s the mass density of the second set of welghts.




ITT.  THEORETICAL ANALYSIS

A.  GENERAL

In hydrofoil applications, an adequate definition
of flutter properties can be obtained from a study of the
stability of very small motions. Small motions should be
stable; otherwlse, they lead to fatigue conditlions 1f not to
larger desftructlive motions. In practice, the large motions
usually are stable 1f the small motions are stable. There-
fore, time dependence can be assumed to be proportional to
eXt, where A 1s a complex numbcr; all other motlons can be
bullt up by superposlition. (The procedure for superposing

the 11ft response for more complicated motions 1s glven in

Appendix A.)

During f{lutter, the critical flutter-speed 1s
assoclated with a frequency of sustained vibratory motion.
The determination of the critical flutter-speed becomes a
simpler problem when simple harmonic motion 1s assumed; 1t
1s easler to describe mathematically the hydrodynamlc loads
for simple harmonic motion than it 1s to describe these loads
for more general motlons. Therefore, to simplify the problem,
the speed and frequency requlred for sustalned simple harmonlc
motion should be determlned, rather than the response of the
foil syst:m as a function of speed. In thils i1nvestigation,
all time dependent terms for simple harmonic motion were
assumed proportlonal to ejwt (w real), rather than ekt.
Figure 8 shows the coordinates and nomenclature used in this

Investligatilon.
B.  EQUATIONS OF MOTION

The equatlons of motlon for the experimental model

were derlved from Lagrange's equatlons. A lumped-parameter

11




system, with negligible damping due to friction or structural
deformations, was assumed representative of the model.
Figure 9 shows the dynamic system and the following defini-
tions were used:

m = mass of translating parts per unlt span;

m_ = mass of rotating parts per unlt span;

mass polar moment ot inertia of rotating parts
¢ about 1ts center of gravity per unit span.

The Lagrangian for the translation and rotation dlsplacements
[h(t) and a(t) ] 1is

—
i

1 oy 1 : R s e 2
£ = -é-mhh + §ma(h + Xaba) it E‘ch. = 2Khh 2Koca . (14)

By substituting £ into Lagrange's equation, the equations of

motion for the system are

Qs (15)

mh + maxaba + Khh .

and
I, + mx bh + Ko =@, (16)
where the dots 1ndicate differentiation with respect to t and
the following definlitions have been used:
m = mh + m, = total osclllating mass per unlt span,

I, = I, + (xab)zm = mass polar moment of inertia of
rotating parts about the rotational
axls per unit span.

Qh and Qd,are the generallzed force and moment, respectively,
acting on the system. By considering the work done by external
forces during a virtual displacement (éh and éa), Qh and Qa
became the hydrodynamic 11r{ and moment per unit span at the

rotational axils.

The equations of motion can be put in non-dimensional
form by dividing equatlon 15 by mpbU® and equation 16 by
vrprU2 and by using the following non-dimensional parameters:

12
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—

= density ratio,

=<
1l
g
Ko}
lop
n
|

coupling mass ratlo,

= dimensionless uncoupled natural
frequency in translation,

D;’O ™
AV ||
1 95

S5 5
o
2
g
N
| 1}

Q.2 = K b3/I U2= dimensionless uncoupled natural
a a a p
frequency in rotation,
r 2 = I /mb® = dimensionless radius of gyration about
a o
rotational axis,
s = Ut/b = dimensionless time variable, and
n(s), as) = dimensionless translation and rotation
dlsplacements
so that
h(s) = lh(t) and ofs) = a(t). (17)

b
By introducing these quantlties and by nondlmenslonalizlng,

the equatlions of motion become

poB" +Bux o +p0 2h = L/ by (18)

and
2N " .2 2 . 2112
ppa a' Buxah +/11a Qa a = M/p b3y (19)

where the primes indicate differentiation with respect to s.

1. Ilutter Analysils

The description of the mode shape assoclated wilth
the flutter of a hydrofoll connected to a hull involves the
superposition of the normal vibration modes of the complete
structure. When this preclse mode shape is used in flutter
analyses 1t results in a lengthy computation because there

are an inflinite number of normal vibration modes.

Aeroelastlc computations have shown that flutter
speed and frequency can be predlcted accurately by the
Raylelgh-Ritz procedure. With this procedure, the mode shape
is approximated by the superpositlion of a finite number of
pre-asslgned or assumed modes. The cholce of modes 1s
governed by the structure involved and by the results desired.
Reference 7 dlscusses the cholces available and the criterion

13




for thelr use. An accurate and simple procedure is to use
two or three primitive mode shapes that are compatible with
the boundary conditions. The assumed modes method of flutter
analysils has been compared with a more exact treatment
(reference 3). The two methods reasonably agreedin the range

of parameters used in hydrofoll design. |

In this investigation, the assumed modes method
exactly described the flutter mode of vibration; the two
degrees of freedom of translatlon and rotation in the plane
of flow are the only appreclable displacements of the model.
A llnear combination of these displacements exactly des-
cribed the flutter mode-shape. Thus, no approximation was
used 1n the application of the assumed modes method.

In thls case, 1t was more convenient to divide the
equation of motion by mpb°w? and mpb*w® rather than use equa-
tions 18 and 19. Introducting the assumption of simple har-

monic motion in the form

Jwt

h = h be and o = o ed®t (20)
0] @]

and using the quantitles u, Xy and L. the equations of

motlon were

“ny 5, % jwt ot
_(_Dy2r_Qy2 - 3,,2
uCl (wa) (a)) 1 he + ppx o € L/mpbiw? (21)
and
{ (Js) -
,u,Bxahoe"wt + pl’ae [1 - (Y274 ed®t M/mob%w®  (22)

0 0
At thils polnt, an expllclt representation of the
hydrodynamlc loads was Introduced. The Theodorsen results

cited in reference 8 were used in thils analysls. In the designof
the experimental apparatus, every elfort was made to model

the assumptlons involved 1n the theory--that ls, large end-
plates were provided with small clearances to preserve two-
dimenslonal ['low; the [0ll supports were desipgned so that

14
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the desired, Trigld -body motions were achieved at every

point along the span of the foll; no free surface, cavitatlon,
ventilation or sidewall effects were permitted. In additlon,
the foll motlons were assumed to be sinusoidal; however, the

recorded motions were checked only visually.

The representation of the hydrodynamlc loads was
taken from reference 9, where the expressions for the hydro-

dynamic 1ift and moment are glven as

+ a) L, a, eJOT (23)

NOf =

— 3,42
L = mpb3w LhO+ELa—(

h

and
_ 4,2 s - 1
M = mpbw jEMh (2+a)Ltho+EMa (La+Mh)(2+a)

e L (% + a)?] o eJot (24)

In these relations, ab 1s the dlstance {rom mldchord to the
rotational axls and 1s positive if the rotatlonal axis is
aft. The coeffliclents Lh’ Lu, Mh’ and MOL are complex func-
tlons of the reduced frequency (kL whilch is

k = w—é) (25)

A tabulation of these coefficlents may be found 1n references
9 and 10.
These results were Introduced Into the equations of

motion with the followlng notatilon:

be' = Dy
ny' = Lhy
%r' Hu’4%+-ﬁ%m
Iyy' = Iy, (% + a) Ly,
M = M —(% + a)Lhr
oyt = My (3 ¢ D)y




My = My, -3+ a) (T + M )+ (5+ )%

My ' = Moy (54 ) (Tyy + 1) + (5 + a)%,

d = Lhr"MOLJ' + LhJ'MaP' - LaP'MhJ' - MaJ'Mhr"

e = Ly, Myp' - LhJ'MaJ' = Lo Mt F LaJ'MhJ'

£= Loy + M, |

t=1L,'+M " (26)

The subscripts r and J denote the real and imaginary parts of
the corresponding complex numbers. Equations 23, 24, and 26
were introduced into equations 21 and 22 and ejwt which 1s

common to all terms was cancelled, ylelding:

W w
3;1[:1-(5}1)2(3“)2“%“'+JLhJ'€ h,+ pﬁxa+Lar'+jLaJ"ao=O
. (27)
and
wa _
uﬁxa+Mhr'+JMhJ'£ho+ praztl— (E—)2J+Mar'+JMaJ' ao(=8;>.
2

These are the equatlions of motlon that the unknowns ho’ a

U, and w must satisfy.

Equations 27 and 28 are complex, homogeneous, simul-
taneous linear algebralc equatlons 1n the unknown amplitudes
hO and aou A nontrivial solution for these unknowns exists,
1f and only 1f the determinent of their coefflcients vanlshes.
In thils case, the determlnant 1s complex and results in two
slmultaneous equations by setting the real and 1lmaginary parts
of the expanded determinant equal to zero separately. The
solution 1is thus reduced to finding the eigenvalues for U
and w which satlsfy two algebraic equations.

However, U appears in equatlons 27 and 28 only
implicitly in the argument (k) of the hydrodynamlc coefficients.

16
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Because these coefficlents are most easlly handled in tabu-
lar form rather than functional, the argument usually is con-
sldered as an 1ndependent parametrlc variable. The unknown
frequency and one other parameter are then consldered the
dependent unknowns and solutions to the expanded determlnant
are found at chosen values of k. The second unknown 1s
usually chosen so that one of the equatlons resulting from
the expansion of the determinant 1s linear 1n both dependent
unknowns. One method of solutlon of the flutter determlnant
is the density variation method. Alternate means of solutlon

are described in reference 7.

2. Density Varlatlon Method

The denslty variation method was particularly
approprlate here, because the density ratlio was varled while
other parameters were kept constant. Thus, the denslty ratilo
and the square of the unknown frequency ratio were taken as
the dependent unknowns in solving the flutter determinant,

which is:

Il (wh)z(wa)ZHL Y4 L, ! + L+ gL
M- w, W e T Iy HXy * Loy Loy
- W =
Wka+P%r'+J%U' mﬂ%l—(é@2]+%w’+J%U'
(29)

By expanding and setting the imaginary part of the resulting
equation equal to zero, the following linear relation exlsts

between the chosen dependent unknowns:

_ [(wh)2M 'yop 27 1](wa)2 l[: 1 2 3
= GH () My g g Ly g ) - gt BTy - AR T (30)

ol

1
U

&

!
d and [ arg defined in equation 26. By setting the real part
of the expanded determlnant equal to zero, and eliminating

1/u by Introducing equation 30,
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a h h 2 2
) 4 2(2\2 _ -2 t 1
(ug) Ty (—) H E(w ) Map +r, Lhr 14+ eH g

o
Ca 2 j 2 “h 2 “h 2 2
1 t
- () 7 rL e (w-—a) 1+ Jt(wa) Myp' + T Lyt d
2
- HOM " + r®L ' - Bx ] - 2HJe$
2 2 2 — 2 =
+ 1,2 - (Bx)® + JOM "+ r BL t - Px b+ ed® =0, (31)

which contalns only one unknown (wa/b)2, in quadratic form.
The expresslons for H and J are deflned by equatlion 30 so

that

%=H(%“)2+J. (32)

At chosen values of k, equatlion 31 1s solved for values of
(wa/b)z, which are substituted into equation 30 to determine
f. Finally, the corresponding values of the reduced speed
are found [rom the following relatlonship:

U | L/ (33)

bw W
a, Qo
(&)

Thls method of [lutter analysls, including appro-
prlate elastic and dynamlc assumptions, 1s believed to be
most useful in hydrofoil deslpgn procedures. The results of
this analysls applled to the experimental conditions are

shown 1n Figure 10.

The Theodorsen representation of the hydrodynamic
forces limited thils analysils strictly to simple harmonic motilons
in two degrees of [reedom. If other motions are involved,
which are elther not simple harmonlc or other degrees of
freedom, thils analysis 1s not applicable. Subject to these
restrictions, the curve of reduced {lutter speed”versus
density ratlo obtalned by the density variation method defines
the condition--that 1s, speed (U} and frequency (w)--that
must prevail at [lutter for a particular hydrolfoil sectlon.

At speeds above critical lutter-speed, the motion of the




foll will be osclllatory dilvergent and at lower speeds the
motion willl be convergent. The curve plotted 1n Figure 10
18 the boundary between unstable motlion at hilgher speeds and

stable motion at lower speeds.

BE Stabllity Analysils

In the stablllty analysis, the time dependence of
the motions agaln was assumed to be eXt. Therefore, from the
equations of motion, a characteristic equation was derived,
which was a polynomial 1n A. The characteristic values (the
roots of the polynomial) were found and a guantitative
measure of stablllty was obtailned from considering the mag-
nitude and sign of the real parts of all roots. In thils
sense, the assumed modes method of [lutter analysis 1is not a
stablllity analysls because of the simplifylng assumption of

sinusoldal motilon.

In this analysls, the equations of motion in non-

dlmensional form were used :
ph" o+ yﬁxaa" + pﬂhzh - L/mpbU2 = 0 (18)

and

praza" + ppx "+ prazQaga - M/mpb2U2 = 0. (19)

The hydrodynamic terms are introduced by the Duhamel superposi-
tion integral and the Wagner f{unction ¢(s),which gives the time
dependence of the clrculatory 1ift response to a unit step
change 1n angle of attack. The development of these expres-
slons and the followlng results are described in Appendix A

of thls report and in references 7 and 10. The Theodorsen
representation of the 11ft and moment 1is nct applicable to

this analysis (Appendix B).

The hydrodynamlc lorce and moment are

-L/mebU% = h" + a' - aa" + 2W(s) (34)
and )
-M/mph22 = ah" +~(%-+ a)at' + (% + a®)a" -2(%'+ a)W(s)  (35)
19




In these equations, the quantity w(s) i1s defined as

S
w(s) = H'(0)o(s) +f (s - o)H"(0)do, (36)

where

S Elalt (37)

| 1=

H(s) = h' + a + (
and where H'(0) 1s the value of H'(s) at s = 0. Equation 37
1s 1dentical to the expresslon [or the vertical downwash
veloclty at the 3/ chord point of the [oil.
An approxlimate form of the Wagner functlon was

used in thils analysls. The followlng are two approximations
commonly used 1n aeronautical literature (reference 7)°

o(s) %1 - 0.165¢70-01558 _ 35547035 (38)
or
os) ¢ . (39)

The former was used because of 1ts adaptabillty to the
Laplace transform method of solution. Introduclng these
results into the equatilons of motion, taking the Laplace
transform, and uslng the 1nitial conditlons (Figure 8),

ht(o) = a*(0) =0, h(0) = h, and a(0) = a s ( 40)

results in the followlng pair of simultaneous, linear,
algebraic, nonhomogeneous equations In the transforms of the
motion h(p) and a(p) in which p is the complex Laplace trans-
form varlable:

+ a - a)dl+

PO b

h {p2(u+1 + 29) + yﬂhe peﬂuﬁxa - a+ 2

1 -Fp[yﬁxa -a+ 2(% ~a)¢ ]
(41)

p(1 + 2@)‘ = hop(u4-14-2$)-kao

and




1 1 .
pELur® + g+ a® 20 - a%)§ 3

HBx, - a - 2(%-+ a)@f - a

hp®

1 1 - : 1 7
+pf5 - a -2(5 + a)@d+ pr 20 %t = h plupx, - a -2(5 + a)é

.;l.'._a—}-p[[ir‘g-[*—:l;'{' a2—2(1—a2)53 3 (42)
2 o 8 k

where the bar indicates Laplace transformation. The trans-

+ QA
0]

form of equation 38 yilelds

ol 0.165 0.335
#(p) =5 - 5F0.0M5 " 503 (43)

Finally, Dby solving equations 41 and 42 for the transformed
responses h(p) and a(p), then clearing the fraction ylelds

Ap) = 2B ana (p) = SBL (44)

where P, Q and R are polynomlals 1in p. ' and R are of order
five and Q 1s of order six, which permiti:d the followlng

inverse transformation to be used:

6 P(p) ©p.8
-1 P _ n n
g 5%} ) nL:l a3, ° (45)

where p, are o' the roots of the characterlstlc equation

alp) =0 (46)
and where Q'(pn) 1s the derivative ol Q(p) with respect to p
evaluated at p = P These results may be confirmed in any
textbook on operational methods (reference 11). An iterative
process based on Newton's method was used to find the quadratic
factors of equatlon 46 and 1s described in reference 12. The
interest here lies 1n the complex roots of equation 46 and in
particular the root in which the real part becomes positive
above some critical speed. The results were obtalned in the
form of the overall damplng ratilo (o/ba), which 1s the ratilo
of the real part of- Ato the uncoupled rotational frequency.

If the complex root of equation 46 is
p=u-+1yv (u7)
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then the overall damping ratio 1s found from the real part of
p and the frequency ratio (Qﬂna) from the lmaglnary part as
follows

u ) v
= = = u-)—-:——— (48)

The overall damplng ratio as predlcted by thils method for the
experimental conditlons 1s plotted in Figures 11 through 17
with the corresponding experimental results and the frequencles

are presented in Flgures 18 through 25.

C. CRITICAL DENSITY RATIO

An examlnation of the theoretical results, (parti—
cularly those shown in Flgure 10) will show that the reduced
flutter speed becomes infinite at some value of density ratio.
This value can be predilcted by using the following 1nformatlon:
U/bwaf> w, when k-+0 for flnite values ofc@ﬂna, An exten-
sion of the assumed modes analysis leads to an expliclt equa-
tiqn for UF/bwa when these limits are introduced. This result
is developed in reference 3, where the equation 1s shown to be
a ratio of two polynomlals. Setting the denominator of this
result equal to zero yields the relatlon between the para-
meters that must be satisfied at the asymptote- where
UF/bw&f* © gnd g = #CR’ the critical density ratio. It is
found that Hog decreases wlth wh/ma and a very simple rela-
tion is found for the limiting case wh/ba = 0,

_ 1
Yer T B(x, F a) ¥ 1 (49)

where X, t a 1s the c.g. locatlon measured in halfl-chord
lengths from midchord, positive if the c.g. is aft. This
result 1s plotted 1n Flgure 25.

By this procedure, an asymptotic behavior is pre-
dicted for the llutter specd as u approaches Hog® However,
thls asymtote 1s approached [(rom the low u side in many cases
so that #CR 1s not always the minlmum density ratio at which
flutter is predicted.
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Iv. DISCUSSION

A. GENERAL

In these experiments, flutter was induced under
controlled and somewhat artificial condltions to validate the
application of alrfoll theory to hydrofoil phenomena. Con-
sequently, these theoretlical studies were carried out in ac-

cordance wlth aeronautical practices.

B. EXPERIMENTAL PROCEDURE

At each mass condition (un, where n = 0, 1, 2, 4,
7, 9, 11) two bits of experimental Information were obtailned;
the overall damping ratio (o/@a), and the frequency ratio
(w/®,) . The model was locked in position and when the apparatus
attained the desired speed, the model was released and the
resulting motlon was recorded. The speed of each successlve
test was 1lncreased until the motion of the model was diverg-
ent, 1n which case the apparatus was quickly brought to rest
to avold destructive or violent motions. Flutter was obtalned

in each test series except series O(u = 0.758).

A time signal was recorded simultaneously wlth the
motions to measure frequency (w). Because the model had two
degrees of freedom, two values of w were obtainable, The coupled
zero-speed, rotation mode-shape led to flutter. The damping
in the translation mode increased rapidly with speed, con-
venlently alding its eliminatlon from the records. By properly
choosing 1nitial éonditions, appreciable response 1in the
translation mode was eliminated.

The second plece of information, the overall damping

ratio (o/ba), was obtalned using




o 1wy 4n 1+ 1
= - =) g, (49)
a a Ol

where 1 is the number of cycles analyzed. The quantity in
square brackets 1s proportional to the slope of a stralght
line faired through the successive amplitudes of osclllatlon

plotted on seml-log graph paper.

The tests were performed 1n two groups (series 4,
7, 11 and serles 0, 1, 2, 9, respectively), separated by two
weeks, during which time, some of the data were analyzed.
During this time 1t was realized that the rotation mode of
vibration was leading to flutter; subsequently, the model was
held at an initial angle of attack rather than with an initial
translation displacement, as in the [lrst group of tests.
During the second group of tests, an lnvestigation of the
effect of 1nitlial condlticns on the experimental measuiements L
showed that the results of the [irst group could still be
used, because ol the large amount of damping in the transla-
tion mede of vibration; by repeated runs at a particular
speed, the results were found to be reproducible. (See points
at U/bwa = 1.11 in Figure 14 or at U/bw, = 1.21 in Figure 17.)

C. EXPERIMENTAL RESULTS

The maximum speed obtalnable was conslderably lower
than anticlpated. The apparatus was designed on the basis of
a maxlmum speed ol 30 feet per second. Actually, this speed
was 15 feet per second (U/bma = 1.07, for series 0, u = 0.758,
where the limitatlon was most severe and the only mass condi-
tion In which the maximum speed was obtained). The experimental
results for the present Investigation are somewhat inconclu-
slve in this regard: 1t 1is not certain that flutter could not
be induced at a higher speed for series 0O (Figure 11). How-
ever, a sharp upward turn 1n reduced t'lutter speed does occur
as K decreases, (Figure 10), which at least partially sub-

stantiates the existance of an asymptote as predicted.
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D.  THEORETICAL RESULTS

The analysis by the two theoretical methods that
can be used to predict speed and frequency at flutter has
shown that (1) the assumed modes method of flutter analysis
leads to a prediction of Kcor at which the flutter speed
increases asymptotically and (2) the superposition method of
stabllity analysls provides information for speeds other than
the flutter speed; these results were obtalned in addition to
the predlction of critical flutter-speed and frequency.

The flutter speeds as predlcted by the assumed
modes analysis, which involved an exact modal description in
thlis case, are shown in Flgure 10 and the corresponding fre-
quencles for each test condltion are shown in Table II. The
critical-density ratio as predicted by this analysis at
wwﬁwa = 0 1s plotted in Flgure 25. The difference between
series 0, 1, 2, 9 and serles !, 7, 11 (Flgure 10) is caused
by the change 17 X between these two groups, thus causing a
slight shift in For®

Figures 11 through 17 show the overall damping ratio
obtalned from the superposition analysis, which reduces to the
well-known critical damping ratlo for a one-degree of freedom
system vibrating freely 1n air, plotted against the reduced
gpeed for each mass condition. The predicted flutter speed is
found where o/hh goes to zero. A comparlison of these speeds
wlth the theoretical results from the assumed modes analysils
in Flgure 10 for corresponding p's shows the anticipated
ldentical agreement between the two methods. The use of the
gpproximation in equation 38, thus agrees well with more exact
theory. No flutter 1s predicted for series O or 1, Figures 18
through 2} show the frequency ratio versus reduced speed, as

predicted by the superposition method.

Other results o!l' the superposition analysils are
tabulated in Table IIT for series O (p - 3.03).




The theoretlical results described here were obtalned
on an electronlc diglital computer. The program for both the
assumed modes and the superpositlon analysls have been
retalned for future use.
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V. THEORY COMPARED WITH EXPERIMENT

The results of seriles 7, 9, and 11 show relatively
good agreement between theory and experiment for the predicted
flutter conditions (Table II). As cited in reference 4 and
as Indicated 1n Figure 1C¢, the theory gave a conservative
estimate of flutter speed for these conditions. No apparent
reason could be found to doubt the results of series 7
(g = 2.06) in Figure 10; however, there is nothing to cause
these results to be out of line with the other series. A
lower experimental value for the reduced flutter speed at
this mass conditlion would be in agreement wlth the antilci-

pated experimental results.

Between serles 7 and /i, the inadequacy of the theory
to predict the f[lutter speed wlth accuracy becomes more
apparent and the resulting error becomes more dangerous.
Although the good agreement in [requency ratio is retalned at
the lower density ratios, the overall damping ratio is con-
glderably overestimated.by the theory; 1n lact, at serles 1
the thecry predlcts freedom [rom (lutter where flutter was
obtalned during the experiments. In the case of serles 0,
flutter, though it did not occur, was imminent; the theory
predlicts no flutter at all speeds. Even in thils circumstance
the frequency ratio is well predicted (Figure 18) and is
within 9 percent.

The results of reference I, indicated a dlscrepancy
between theory and experiment for the predictlion of flutter
speed ‘at low density ratlos. However, they were not able to
extend thelr investligatlons to a sufficiently low value of
density ratlo to check the exlstence ol an asymptote as pre-
dicted by equation 9. These results are summarized in
Figure 1. At high values of denslty ratio (u = 3.0) the

S e LA




theoretical and experimental results were essentlally in

agreement, or the theory was conservative.

The present results shown in Figure 10 substantlate
the results of reference 4. In additlon, the experimental .
results at serles O(u = 0.758) strongly indlcate the exist-
ence of an asymptote in [lutter speed. There 1s definitely a
sharp upward trend shown as u decreases. The position of
this asymptote 1s not correctly predicted by theory. The
theoretical and experlimental value of “CR are plotted in
Figure 25. The comparison 1ls somewhat worse than 1s shown
there since the theoretlcal curve 1is derlved for the case
wh/aa = 0 and 1n reference 3, 1t 1s shown that HoR increases
with wh/ba.

Some more deflinite information about the discrepancy
can be gotten [from the results of the stability analysis.
The experimental and theoretical overall damping ratios are
compared 1n Figures 11 through 17. There, 1t 1s seen that
G/Eu 1s overestimated by the theory up to series 7 (u = 2,08)
and from that point on the predlcted overall damping ratio is
less than that obtalned 1n the experiments. The frequency
ratio 1s very well predicted throughout as shown in Figures 18
through 24%. We have found that the frequency ratio depends
mainly on terms proportional vo h(t) and a(t) or their second
derivatlives; however, the damplng ratio depends mostly on
terms proportional to the first derlvatives. The latter
contaln the clrculatory responscs--that is, the Theodorsen
or Wagner functions; the [former are not as sensitive to these
functions. Since the [requency ratio is fairly well predicted
and the damping 1s not, it may be surmised that the effectlve
mass and inertla terms in the theory are more accurate than
the circulatory terms. Othcr investipgators have used this

-

hypothesis as mentloned in refcrence 3.




VI. CONCLUSIONS

1. A conservative predlction of flutter speed may be
expected at high-density ratios.

2. The theory does not correctly predlct the flutter
speed near “CR‘

3. The theory does not correctly predlct the locatlon
of HoR:

4. The frequency is very well predicted at flutter and
at lower speeds at all density ratlos.

5. The overall damping ratio does not agree with
experimental results.

6. The cilrculatory terms in the theory are more llable
to doubt than the effective mass or spring terms.
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VII. RECOMMENDATTIONS

Purther investigations are in order to describe
more fully the dlscrepancy that has been shown to exist.
Several different values cf c.g. location and radius of
gyration should be used in further investigations. In addi-
tlon to the results presented here, an experimental determl-
nation of ampllitude ratio and phase angle should be attempted.
Single degree of lreedom studles 1n water should be carrled
out, to provlide separate comparisons between theory and exper-
iment for each component of the 1ift and moment expressions.
Also, zero-speed responses must be analyzed to check the pre-
diction of added mass, added lnertia, and added mass coupling

terms.
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TABLE I

PROPERTIES OF MODEL TENITE II,

Flow Temperature

Speciflc Gravity

Modulus of Elasticilty

Deformation under Load (Cold Flow)

Water Absorption (24 Hrs. Immersion)
Total Welght Galned
Soluble Matter Lost

Accelerated Aglng Welght Lost
(72 hrs at 180°F)

TABLE IT

PARAMETERS AND FLUTTER CONDITIONS

[FORMULA 233, FLOW MS

284°F

1.22

1.30 x 10°psi
33%

m X lO3
w, 2 2 %
Series 2 ;D UF/bma wF/wa B rad
No. B a a exp. the. exp. the. in sec
0 L7158 .496 ,900 251 -~ -~ -- - 2.00 36.0
1 .883 .,496 .895  ,2064 1,22 - .960 == 2,33 32.3
2 1,008 .496 .891 200 1,14 1.84 970 1,000 2,66 30.2
4 1.285 .465 862  ,269 1,08 1,42 .,980 ,977 3.39 26.8
7 2.06  .465 ,830 277 1,53 1,29 .910 1.002 5.43 21.3
9 3.03  .496 268 258 1.44 1,32 980 1.040 8.00 17.5
11 4,07 .405 ,B9Y L2068 1.,5% 1,45 ,985 1,020 10.74 15.0

b = 3 inches, a = -0.5
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VAR

REDUCED FLUTTER-~SPEED

REGION 1 o) NO FLUTTER
b) NO FLUTTER THEORETICALLY, NO EXPERIMENTAL INFORMATION

REGION 2 FLUTTER FOUND EXPERIMENTALLY, BUT NONE PREDICTED
REGION 3 THEORY PREDICTS FLUTTER AT HIGHER SPEED THAN THAT FOUND IN EXPERIMENTS

REGION 4 THEORY GIVES COMSERVATIVE PREDICTION OF FLUTTER SPEED

THEORY
® EXPERIMENT

"-.

A A
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FIGURE I. PREVIOUS EXPERIMENTAL RESULTS
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FIGURE 3. APPARATUS, STARBOARD SIDE

FIGURE 4. APPARATUS, PORT SIDE




FIGURE 6. BALANCE,6 PORT SIDE
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EQUILIBRIUM

POSITION

it

[ ExpeERMENTAL PaRAMETERS |)

ROTATIONAL AXIS

} MICCHORD

' EQUILIBRIUM

[ POSITION
h

| HYDRODYNAMIC FORCES >

EQUILIBRIUM

POSITION

INITIAL CONDITIONS FOR
SUPERPOSITION METHOD ANALYSIS

INITIAL
POSITION

h(0)= hob , a(0) x a,

AlO)= @(0)= 0

FIGURE 8. REPRESENTATIVE HYDROFOIL ORIENTATION FOR
THEORETICAL ANALYSIS



EQUILIBRUM
POSITION

FIGURE 9. SCHEMATIC DIAGRAM OF SYSTEM
USED FOR DYNAMIC ANALYSIS
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APPENDIX A: STABILITY ANALYSIS BY SUPERPOSITION
I. INTRODUCTION

To predict the stability of small elastic-deforma-
tions of a hydrofoil section, three types of forces must be
related to the motions of the foll: inertlal reactions,
elastic restralnts, and hydrodynamic loads. The inertial
forces can be described by elther Lagrange's or Newton's
equations; to describe the elastic forces, straln-displacement
and stress-straln relationships must be established. (Hooke's
law can be used to relate the stresses to the strains.)
Hydrodynamic loads due to sinusoidal motions have been de-
scribed mathematically by Theodorsen (reference 8).

A.  HYDRODYNAMIC LOADS DUE TO SINUSOIDAL MOTIONS

The sinusoldal motions are expressed as

h(s) = hoejks

a(s) = aoeJkS : (a-1)

where, ho and ao are small dimensionless amplitudes of heave
and pltch, and may be complex; k 1s reduced frequency; and s
1s dimensionless time. The two-dimensional 1ift (L) and
moment (M) per unit span for a sinusoldal motion are expressed

as
L/mpbU% = - [h" + a' - aa"1 - 2C(Kk)Lh' + a + (% - a)a'l
2112 _ ] 1 l o 1l l
M/mpb2U? = Lah" - (§ + a)at - (§ + a2)a"1 + 2(§ + a)c(k)
Ch' + o+ (3 - a)a’d (a-2)
A-1
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w = %?rl; = 1,23 e (A-5)

Let S = TU/b be the dimensionless period of the motion. Thus,
the Fourler coefficlents are

(S S
_1 _ 1
o & §J h(s)ds, a, =3 J o s)ds,
0 0
¢S S
~-Jk 8 -jk 8
_ 2 / ‘jn _ 2 n N
h =3 his)e ds, a_ = g.{ ofs)e ds. (A-6)
Yo 0

To find the 1ift response to this motlon, the response for a
single Fourlier component must be obtalned, whlch 1s expressed

as

Jk s
2 _ _ n . 2 2
Ln/ﬂpr = -¢ { k®h + Dk, + ak2l o + EC(kn)EJknhn +

1
{1 + (5 - a)Jkn} “n]} (A-7)
and the moment response 1s expressed as

Jk_ s
2T 2 1 (L 2y, 2 _
Mn/ﬂpr = -e {akn h + E(2 + a)Jkn (8 + a )kn 1a,

2(% + a)C(k )L ik h + {1 + (% - a)Jkn}ahJ} (A-8)

The 1ift and moment response to ho are zero; however, there
1s a steady response to the mean angle of attack (ao):

2:— = !

Lo/ﬁpr 20, = L

22 _ 5 -t L
Mo/hpb U2 = +2(2 + a)ao M (A-9)

The sum of the responses to the components of the
motion (equation A-M) results 1n the total 1lift and moment:

A-3




and moment acting on the foll. Thus, the case of a foil
operating in obllique seas may be analyzed. These results
were derived assuming a rigid chord-section. Elastic defor-
mations in camber could be included using the results of
Splelberg*. The affects of aspect ratios as low as 2 can be
included by using the table of aerodynamlc coefficlients by

Relssner and Stevens*¥,

D. ARBITRARY MOTIONS

The Theodorsen results can be extended to arbltrary
motions*¥*¥*, For this motlon, the nonclrculatory terms in
equation A-10 are not changed and only terms containing C(kn)
are considered. Also, the cilrculatory 1ift and moment terms
depend on the motion in exactly the same way--that is, through
the vertical velocity of the 3/4-chord point, which is

H'(s) = h'(s) + a(s) + (% - a)a'(s). (A-1Y4)

Using this observation, the cilrculatory 1lift response to a
single Fourier component of reduced frequency k 1s, for a

unit amplitude of H'(s),

ALc/ﬁpUeb = - 20(k)ed"® (4-15)

The Fourler'integral representation of an arbltrary motion

H'(s) becomes

*Splelberg, Irvin, N., "The Two-Dimensional Incompressible
Aerodynamlc Coefficlents for Osclllatory Changes in Airfoil
Camber, " Wri%ht Alr Development Center, Technical Note
WCNS 52-7, 16 August 1952.

**Reissner, Eric and Stevens, John E., "Effect of Finite Span
on the Alrload Distributions for Osclllating Wings.
II-Methods of Calculations and Examples of Application”,
NACA TN 1195, 1947,

***Wagner, H.,, "Uber die Entstehung des Dynamischen Auftriebes

von Tragflugeln," Z. Ange. W. Math. Mech., Bd.5, Heft 1,
February, 1925.
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cmann

Consider, a step change in H'(s):

0, for 8 < 03
H'(s) = 1 (A-21)
ht(0) + a(0) + (5 - a)a'(0), for s >0

The Fourler integral for such a motion 1is

H'(s) = —1—Eh'(0) + a{0) + (% - a)a'(0) J/ -e%;i dk (A-22)

Comparing equatlon A-22 and equation A-16 shows that
1(k) =Cn'(0) +a(0) + (5 - a)a’(0)I 5,  (A-23)

for this motlon. The circulatory 1lift response to thls step
change 1s found by substituting equation A-23 into equa-
tion A-18:
[09]
L./PU%b = - Cht(0) + a(0) + (3 - a)a(0) ]/ CSE) eI gy
" - B

. (A-24)
The Wagner function Eﬁ(s)] 1s defined as the time dependence
of the clrculator 1ift response to a unit step change 1n H'(s)

at s = 0 or

00

#(s) = % %l eJK8 gy (A-25)

-00

which when substituted into equation A-24 yilelds
L /meU%b = - 2Ch'(0) + a(0) + (3 - a)a'(0) W(s) (A-26)

Dividing the Theodorsen function into 1ts real and imaginary
parts [F(k) and G(k) ], respectively, results in two simpler
relations for the Wagner function:

A-T7




. (4

M = mpb2U2 [ah" 4 §+aﬁv+(%+aﬁdﬁ+

S
21ob202 (£ + a) gﬂ'(o);zf(s) +/ ds - ) ad:y H'(y)dyt  (a-31)

5
where
4(s) =%f E(Tii)- sin ks dk , (A-32)
0 ; 8 <05
H'(s) ={h'(0) + Ua(0) + b (% -~ a)at(0) = H'(0), s = O;
h'(s) + Ua(s) + b (% - a)a'(s) , 8 > 0.(A-33)

II. ANALYSIS OF SYSTEMS WITH TWO DEGREES-OF-FREEDOM

The 1ift and moment equations were used in the
gtability analysis to determine the overall damping and fre-
quency ratio associated with the experimental conditions. To
do this, equations A-30 through A-33 are substituted into the
equations of motlon, equations 18 and 19. The equatilons can

be wrltten as

(k+2)n" + po®n + (ppx - a)a" + o' + 2 CH'(0)f(s) +

8
/ s - Y)H"(v)dvy1 = 0 (A-34)
0
(uﬁxa - a)h" + (pr + % + a2)g" + (14— a)a! + ur Qe ot
2 [HY( / Hls - v)H"(y)ayd = 0. (A-35)
A-9
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The polynomials in equation U4 are now defined so that the
inverse Laplace transform i1s 1ntroduced to determine h(s)
and a(s). Referring to any text on Laplace transformation

- the following theorem applies*.If Q(p) 1s a polynomial of
degree 1, with 1 distinct zeros p = p;, Pps«--» Py and P(p)
1s a polynomial of degree 1 - 1 or less, then :

( (a-13)

P(p,) 1
(o) (P - P

O

1
n=1

Ol
3

To each term of equation A-43 the followlng lnverse transform

applies

p t
s"l{ 1 }=en (A-41)
P - P,

Summing thls result for each of the six zeros of Q(p) ylelds

6
-1 P( _ P(pn) pns ‘_
e - L (49

The six roots of the denominator [Q(p) ] must be
determined. A process based on Newton's lteratlive method was
usedf*.ln thls process, the quadratic factors of equation 46
are determined first, then the palrs of roots for each quad-
ratic factor are found. The polynomlal to be factored i1s of
sixth order so that three quadratic factors and slx roots
must be determined.

Each root 1s complex:

pn un + JVI’I

n=2%1..05 6 ( A-16)

*Hildebrand, F. B., ADVANCED CALCULUS FOR ENGINEERS, Prentice-
Hall, Inc., New York, 1954.

*¥Described in Scarborough, J. B., NUMERICAL MATHEMATICAL
ANALYSIS, The Johns Hopkins Press, Baltimore, 1950,

A-173




APPENDIX B: GENERALIZATION OF THEODORSEN'S FUNCTION
FOR CONVERGENT ( STABLE) OSCILLATIONS

by Paul Riltger

The Theodorsen function (reference B-1)was developed
for the case of a real argument. When thils functlon was
extended to 1nclude complex arguments, two different and
incompatible conclusions were made. (references B-2 and B—3)
To resolve thils dilscrepancy, the following rigorous analysils

was developed.

Theodorsen (reference B-1) showed that the clrcula-
tlonal part of 1i1ft forces caused by translational motions
with unlt-magnitude velocities--that is, h(s) = ejcs--is

L(s) = 20mUbC(t)n'(s) (B-1)

where the Theodorsen function C(¢) 1s

o]

s e'JCx dx

\Vx? -1
f x + 1 e—JCx dx
x -1

8|+

(B-2)

c(t) =
J

The function C(¢) is properly defined by equation B-2,1f and
only if the complex number ¢ 1s restricted so that

Im(t) <O (B-3)

This lnequallty 1s satlsfled 1n the case of divergent oscil-
latlons. If Im(¢) = 0, the integrands in equation B-2 behave
like 8in £x at «; hence, the lnftegrals would be oscillatory
divergent. If Im(C) > 0, whlch 1s true for convergent oscll-
lations, then both integrals in equation B-2 become infinite.
Hence, the Theodorsen functlon, as defined by equation B-2,
1s meaningless for Im({) > O.




——

points'then 1t 18 essentlial to speclfy whlch branch of the
function 18 to be used. In the present case,the physically cor-
rect branch 1s partly determined by equation B-2. That 1s,
we must be sure to choose a branch of Cl(C) that colncldes
with ¢(¢) for Im(¢) < O, 1.e., - m<arg ¢ < 0. If the
so-called "principal branch" of Kn(JC) is chosen, thils con-
dition 1s satlsfied and, hence, this seems to be the most
natural cholce. Luke and Dengler have used another branch as

will be shown below.

The "principal branch" of Kn(JC) 18 usually defined
(see Watson, reference B-5, p. 77) in terms of the function
In. That 1s, in general, we have the following definition of

the many-valued functlion Kn(z)

I (z) - I.(z)

_m -V V \ -
Kn(z) = Evgmn T ) (z #0). (B-6)

Now, Iv(z) is in turn defined in terms of Jv(z) and the

principal branch of Iv(z) 1s given by

() e_wr‘j/2 Jy(zeﬂj/é), -1 < arg z < w/2,
I.(z) =

14 y
e3v7rJ/2 Jv(ze—37TJ/2); /2 < arg z < . (B-7)

In equation B-7, to be precise, the principal branch of JV is
to be taken, which 1s the reason for a split definition

of Iy(z). If z in equation B-7, lies in the second quadrant,
i.e., m/2 < arg z < m, then zem/2 (L.e. jz) would be such
Phat % arel(ze /2 N 2 but i s woulld nent givel ) valne
of Jv which 18 not on the principal branch. The principal
branch of JV(C) (see Watson p. 4l) is obtained by restricting
arg ¢ to -m<arg { < .

To carry thls all the way, Jv is defined by

T = ()Y et
K=o

B-3




This definition of K (z) 1s often written

K (2) = % JePmI/2 Hn(l)(Jz) (B-12)

which 1s correct for the multi-valued function Kn(z), but 1if
one wlshes to restrict oneself to the princlpal branch, then

equation B-11 must be used.

The results of Luke and Dengler are obtalned by
using equation B-12 instead of equation B-11 and hence must
be interpreted with this fact in mind. In particular, they
are concerned with the values of C(C) in the vicinity of
arg ¢ = 0. Hence, by equation B-5 they use Kn(JC) near
where arg ¢ =0, l.e. where arg J¢ = m/2. So, if arg ¢
is slightly greater than zero, they are uslng values which
are no longer on the principal branch. The many valued
function Kn(jC) 1s continuous for arg ¢ = 0, but the single-
valued principal branch is not. Jones used the principal
branch and hence his values show this discontinuity along
arg § = 0. Incldentally, he uses rectangular coordinates
which hide the significance of the restrictlon on arg i .

Since aerodynamiclsts seem to be most 1lnterested in
the region around arg ¢ = 0, there is something to be sald
for the Luke and Dengler approach. That 1s, thelr extenslon
of the definition of C(k) 1s the only one which agrees with
equation B-1 for Im(k)< O and at the same time 1s the analytic
contlnuation of equatlion B-1 across the half-line arg k = O,
It should be emphasized, however, that this approach still
leaves one with a dlscontinulty along the negative real axis,
1.e. for arg ¢ =% m (1f one desires a single-valued func-
tion). Since Luke and Dengler do not dilscuss the branches of
functions involved, there 1s some ambiguity in theilr defini-

tions.

Moreover, the physical meaning of equation B-5 for
Im(¢t) > 0 1s not at all clear.




Hence, the circulational part of the 1ift force caused by a
unlt step change in translational veloclty 1s glven 1n

general by
S
L(s) = 2pmUb L@(s) + J ¢ f #(x) eJC(S - x) dx 1 (B-16)
0

This-fesult agrees with Blsplinghoff, etc. (reference B-7)
Tor SaN i Pl BEoRE el
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